Exercises Module 2

Corrections

Exercise 2.1

The shear force is equal to the shear stress on the surface element multiplied by the surface
area. To identify the relevant component contributing to the shear force, we can use the
general formula for the shear force Fgj o0y

Fshear = — Tjk|j(ﬁi PkA;
with the direction of flow k (unit vector k) and the direction of momentum transport j (unit
vector ). n; is the surface normal vector of the considered surface A4;.
From Newton’s law of viscosity, we know that shear stress as a momentum flux in direction j

.. . . dv . . . .
originates from a non-zero velocity gradient d—jk of vy in direction of j.

If fluid is flowing over the surface of a solid body, the no-slip condition has to be fulfilled at
the surface. If the body is not in motion, this implies a velocity of zero right at the surface
and on the whole surface. Therefore, there can be no gradient of the velocity along the
directions moving on the surface, but only in the directions moving away from the surface
element. For example, the velocity on the surface does not vary in z or 8 in the case of a
solid cylinder, because it needs to be zero everywhere on the cylinder.

With that in mind, we can derive the terms for the shear force on the indicated surface
elements:

a) dFgpeqr = —Trgly—gRdO X dz X (R -#)0 = —7,4|,—grRdO dz O
b) dFspeqr = —Trzlr=grRAO X dz x (i - #)2 = —T,,|,—gRd6 dz 2
¢) dFsheqr = —Trgly=gRdO X Rsinfdep x (- #)0 = —1,4|,-grR?sind dOd¢ 0

d) dFgspeqr = —rr¢|T=RRd9 X Rsinfd¢ X (A *#) ¢ = —T,9|,—grR?sind dOd¢ ¢

e) dFgpear = —Torlo=adr X (rsina d¢) x (A - 0)F = —14,|g=qrsina drd¢ #

The coordinate system in case e) is a spherical coordinate system. The cone is placed within
a sphere with the origin of the cone being at the origin of the sphere. 8 and ¢ are chosen in
a similar way as for a sphere.
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Exercise 2.2

In cylindrical coordinates: (7, 8, z)

The fluid is moving in the orthoradial direction (defined by eg), while the speed gradient is
only radial (the speed does not depend on 6 and z). Therefore, the velocity profile will have

the form:
v=vg () eg

Moreover, inside the fluid, the pressure varies radially and vertically, but does not depend
on @ (due to the cylindrical symmetry, nothing should vary along 8). Therefore, we have:

p=p(r 2z)

We now apply the Navier-Stokes equation in cylindrical coordinates.
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Integrating equation (2) gives:
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= ar\ror
10
o (rvg) = C;
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The boundary conditions are:
Vglyr=0 = 0 (since at r = 0 there is no motion)

= (C,=0

and vg(R) = 2R (Known wall velocity)

= C, =20

Therefore:

Integrating equation (1) gives:

1
p(r,2) =5 pQ*r* + f(2)

We use equation (3) to determine f(z):

dp
E)z=_pg
df
E=_’Dg

f(2) = —pgz + C3

Therefore, overall:

1 2,.2
p(r,z) = > pNr* —pgz + C3
Boundary condition:

p(r,z = 5(7‘)) = Patm

where §(r) is the free surface of the liquid.

By applying this boundary condition, we can get the equation for the surface:



1 2.2
patm=§pf2 re—pgd(r) + C;

1 C
5(r) == N*r? _Patm | 23
2g pg  Pg

and the boundary condition we can apply to calculate the constant is at the lowest point of
the fluid surface:

6(r=0) = z

= Patm = —PYZo + C3 = (3 = Patm + PIZo

Therefore

1 5.
8(r)=5.(2r + z,

Note: If we want to calculate the pressure, we can substitute the constant we calculated into
the pressure equation and finally get:

1
p(r,2) = Parm =5 pR*r? 4+ pg(zo — z)

Exercise 2.4

The fluid is flowing in the z direction and we have velocity gradients in the x and y directions.
Therefore:

v =1,(xy)e,

Moreover, ignoring any gravitational effects, the pressure is uniform on a section of the pipe
and varies along the flow:

p =p(2)
The velocity profile satisfies the boundary conditions:
v(+B,y) = 0;v(x,+B) =0

avz( _0 _O)_O_avz
ox T UYTHE " dy

(x=0,y=0)

First, let’s see if the proposed solution matches the boundary conditions:

_ (po — pL)B? y? x?
T Kl - ﬁ) (1 - ﬁ)l



v(+B,y) = 0 yes
v(0,+B) = 0 yes

v, (po — pL)B? <1 y2> 2

dx aul. pz* Ve

v, (po — pL)B? 1 x*\ 2
dy 4l pz)pzY V¢

Ok looks good so far, lets next check the momentum balance. In Cartesian coordinates, the
Navier-Stokes equation projected on the x and y axis are irrelevant here (we just end up with
the hydrostatic pressure):

On the z axis:
v, v, v, a}éz) ap 0*v,  d%*v, 0%,
P (/at +/46x +%6y TV z) T "oz M\ T oyt T A +’%

op 0%v, 0%y,
0=——
+#<ax2 * dy?

This relation must be true over the entire domain of our square duct. Let’s check this.
Solving for the second derivatives using the given velocity profile:

%v,  (po—pL) y?
dx? 2ul

0%, _ (po — 1) x?
dy? 2uL

Plugging in the Navier-Stokes equation:

_a_P_I_ 62v2+62vz :>_(')_p+ _(PO—PL) 1_)’_2 _(PO—PL)BZ 1_x_2
9z M\ axz T ay2 9z H 2ul. B2 2ul. B?
ap  (o—p1) y? x*\\
>~ 2 \UT) T\ TE)) T

We have the sum of three independent functions of z, y, x. If the Navier Stokes equation was
verified, the sum of these functions should be always equal to 0.

In particular, on the current line defined by x=0 and y=0 (center of the pipe), in analogy to
flow in a circular pipe the pressure drop must be linear so we must have:

a_P __ (Po — 1)
0z L

And since p depends only on z, this must therefore be true in all the fluid. Which implies

that:



sipop(-5)- (-5

For any x and y on the section we are considering.

Clearly this is not true as for non-zero values of x and y the equation is not correct.
Therefore the momentum balance is not satisfied and thus velocity profile we are given is
wrong.

For those that are curious the correct velocity profile is given by the following (rapidly
converging) infinite series:

1 dp 1 (-1)" cosh un y
v, (x,y) = (y B?*) — 16B? z ZlB) cosh (un ﬁ)
cosh (un ZB)

where u,, = (2n — 1)7. Yes, this is the real solution ©. In another example we will show you
how these infinite series arise.

Exercise 2.5

In cylindrical coordinates. Due to the symmetry of the problem, nothing should be
dependent on 8. Moreover, the flow is only radial.

Therefore, we have:
v=uv.(r2)e,
And

p =p(r, 2z)

The boundary conditions are:

v,.(r,+b) = 0;

The projected Navier Stokes equations give, after simplification:

ov,  dp 0 0%,
PUr e = "o TH (a<‘—< ”r)> )

op
—=0
00

0
£ = 0 (neglecting gravity)



Moreover, the continuity equation is always valid:

dp
— = (V-
5= (Vo)
In cylindrical coordinates the continuity equation is :
ap 10 9 v + 10(pve)+0(pvz)
c')t ror Pl 00 0z

Since we are at steady state, and v = v,.(1, 2) e,. the continuity equation becomes (assuming
constant density):

10 d
;a(rpvr) =0 = a(rvr) =0

Integrating the simplified continuity equation (keeping in mind that v,.(r, z)):
_f®@
= f() o v ==

Replacing this result into the simplified Navier Stokes:

av, dp 0%v,
+u

PUr oy T T ar 0z2
_f@?_ _dp ud’f
r3 S dr | rdz?

We do not know how to solve such an equation, unless the right term is negligible (see next
module).
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