
Exercises Module 2 

Corrections 

 

Exercise 2.1 

The shear force is equal to the shear stress on the surface element multiplied by the surface 

area. To identify the relevant component contributing to the shear force, we can use the 

general formula for the shear force 𝐹𝑠ℎ𝑒𝑎𝑟:  

𝐹𝑠ℎ𝑒𝑎𝑟 =  − 𝜏𝑗𝑘|
𝑗
(𝒏̂𝒊 ∙ 𝒋̂)𝒌̂𝐴𝑖 

with the direction of flow 𝑘 (unit vector 𝒌̂) and the direction of momentum transport 𝑗 (unit 

vector 𝒋̂).  𝒏̂𝒊 is the surface normal vector of the considered surface 𝐴𝑖. 

From Newton’s law of viscosity, we know that shear stress as a momentum flux in direction 𝑗 

originates from a non-zero velocity gradient 
𝑑𝑣𝑘

𝑑𝑗
 of 𝑣𝑘 in direction of 𝑗. 

If fluid is flowing over the surface of a solid body, the no-slip condition has to be fulfilled at 

the surface. If the body is not in motion, this implies a velocity of zero right at the surface 

and on the whole surface. Therefore, there can be no gradient of the velocity along the 

directions moving on the surface, but only in the directions moving away from the surface 

element. For example, the velocity on the surface does not vary in 𝑧 or 𝜃 in the case of a 

solid cylinder, because it needs to be zero everywhere on the cylinder. 

With that in mind, we can derive the terms for the shear force on the indicated surface 

elements:  

a) 𝒅𝑭𝒔𝒉𝒆𝒂𝒓 =  −𝜏𝑟𝜃|𝑟=𝑅𝑅𝑑𝜃 × 𝑑𝑧 × (𝒏̂  ∙ 𝒓̂)𝜽̂ = −𝜏𝑟𝜃|𝑟=𝑅𝑅𝑑𝜃 𝑑𝑧 𝜽̂  

 

b) 𝒅𝑭𝒔𝒉𝒆𝒂𝒓 = −𝜏𝑟𝑧|𝑟=𝑅𝑅𝑑𝜃 × 𝑑𝑧 × (𝒏̂  ∙ 𝒓̂)𝒛̂ = −𝜏𝑟𝑧|𝑟=𝑅𝑅𝑑𝜃 𝑑𝑧 𝒛̂ 

 

c) 𝒅𝑭𝒔𝒉𝒆𝒂𝒓 =  −𝜏𝑟𝜃|𝑟=𝑅𝑅𝑑𝜃 × 𝑅sin𝜃𝑑𝜙 × (𝒏̂ ∙ 𝒓̂)𝜽̂ = −𝜏𝑟𝜃|𝑟=𝑅𝑅2sin𝜃 𝑑𝜃𝑑𝜙 𝜽̂ 

 

d) 𝒅𝑭𝒔𝒉𝒆𝒂𝒓 =  −𝜏𝑟𝜙|
𝑟=𝑅

𝑅𝑑𝜃 × 𝑅sin𝜃𝑑𝜙 × (𝒏̂  ∙ 𝒓̂) 𝝓̂ = −𝜏𝑟𝜃|𝑟=𝑅𝑅2sin𝜃 𝑑𝜃𝑑𝜙 𝝓̂ 

 

e) 𝒅𝑭𝒔𝒉𝒆𝒂𝒓 = −𝜏𝜃𝑟|𝜃=𝛼𝑑𝑟 × (𝑟 sin𝛼 𝑑𝜙) × (𝒏̂  ∙ 𝜽̂)𝒓̂ = −𝜏𝜃𝑟|𝜃=𝛼𝑟sin𝛼 𝑑𝑟𝑑𝜙 𝒓̂  

The coordinate system in case e) is a spherical coordinate system. The cone is placed within 

a sphere with the origin of the cone being at the origin of the sphere. 𝜃 and 𝜙 are chosen in 

a similar way as for a sphere. 
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Exercise 2.2 

In cylindrical coordinates: (𝑟, 𝜃, 𝑧) 

The fluid is moving in the orthoradial direction (defined by 𝒆𝜽), while the speed gradient is 

only radial (the speed does not depend on 𝜃 and 𝑧). Therefore, the velocity profile will have 

the form: 

𝒗 = 𝑣𝜃 (𝑟) 𝒆𝜽 

Moreover, inside the fluid, the pressure varies radially and vertically, but does not depend 

on 𝜃 (due to the cylindrical symmetry, nothing should vary along 𝜃). Therefore, we have: 

𝑝 = 𝑝(𝑟, 𝑧) 

We now apply the Navier-Stokes equation in cylindrical coordinates. 

1) On r: 

𝜌 (
𝜕𝑣𝑟

𝜕𝑡
+ 𝑣𝑟  

𝜕𝑣𝑟

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝑟

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑟

𝜕𝑧
−

𝑣𝜃
2

𝑟
) = −

𝜕𝑝

𝜕𝑟
+ 𝜇 (

𝜕

𝜕𝑟
(

1

𝑟

𝜕

𝜕𝑟
 (𝑟𝑣𝑟)) +

1

𝑟2

𝜕2𝑣𝑟

𝜕𝜃2
+

𝜕2𝑣𝑟

𝜕𝑧2
−

2

𝑟2

𝜕𝑣𝜃

𝜕𝜃
) + 𝜌𝑔𝑟 

−𝝆
𝒗𝜽

𝟐

𝒓
= −

𝝏𝒑

𝝏𝒓
  (𝟏) 

2) On 𝜃: 

𝜌 (
𝜕𝑣𝜃

𝜕𝑡
+ 𝑣𝑟  

𝜕𝑣𝜃

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝜃

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝜃

𝜕𝑧
−

𝑣𝑟𝑣𝜃

𝑟
) = −

1

𝑟

𝜕𝑝

𝜕𝜃
+ 𝜇 (

𝜕

𝜕𝑟
(

1

𝑟

𝜕

𝜕𝑟
 (𝑟𝑣𝜃)) +

1

𝑟2

𝜕2𝑣𝜃

𝜕𝜃2
+

𝜕2𝑣𝜃

𝜕𝑧2
+

2

𝑟2

𝜕𝑣𝑟

𝜕𝜃
) + 𝜌𝑔𝜃 

𝟎 =  𝝁
𝝏

𝝏𝒓
(

𝟏

𝒓

𝝏

𝝏𝒓
 (𝒓𝒗𝜽))  (𝟐) 

3) On z: 

𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑟  

𝜕𝑣𝑧

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝑧

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+ 𝜇 (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑧

𝜕𝑟
 ) +

1

𝑟2

𝜕2𝑣𝑧

𝜕𝜃2
+

𝜕2𝑣𝑧

𝜕𝑧2 ) + 𝜌𝑔𝑧 

𝟎 =  −
𝝏𝒑

𝝏𝒛
− 𝝆𝒈  (𝟑) 

Integrating equation (2) gives: 

0 =  
𝜕

𝜕𝑟
(

1

𝑟

𝜕

𝜕𝑟
 (𝑟𝑣𝜃)) 

1

𝑟

𝜕

𝜕𝑟
 (𝑟𝑣𝜃) = 𝐶1 

𝜕

𝜕𝑟
 (𝑟𝑣𝜃) = 𝐶1 𝑟 

𝑟𝑣𝜃 = 𝐶1

𝑟2

2
+ 𝐶2 



𝑣𝜃 =
𝐶1𝑟

2
+

𝐶2

𝑟
 

The boundary conditions are: 

𝑣𝜃|𝑟=0 = 0  (since at r = 0 there is no motion) 

⟹  𝐶2 = 0 

 

and 𝑣𝜃(𝑅) = 𝛺𝑅 (Known wall velocity) 

⟹  𝐶1 = 2𝛺 

 

Therefore: 

𝒗𝜽(𝒓) = 𝜴𝒓  

Integrating equation (1) gives: 

𝜕𝑝

𝜕𝑟
= 𝜌𝛺2𝑟 

𝑝(𝑟, 𝑧) =
1

2
 𝜌𝛺2𝑟2 + 𝑓(𝑧) 

 

We use equation (3) to determine f(z): 

𝜕𝑝

𝜕𝑧
= −𝜌𝑔 

𝑑𝑓

𝑑𝑧
= −𝜌𝑔 

𝑓(𝑧) = −𝜌𝑔𝑧 + 𝐶3 

Therefore, overall: 

𝑝(𝑟, 𝑧) =
1

2
 𝜌𝛺2𝑟2 − 𝜌𝑔𝑧 + 𝐶3 

Boundary condition: 

𝑝(𝑟, 𝑧 = 𝛿(𝑟)) = 𝑝𝑎𝑡𝑚   

where 𝛿(𝑟) is the free surface of the liquid. 

 

By applying this boundary condition, we can get the equation for the surface: 



𝑝𝑎𝑡𝑚 =
1

2
 𝜌𝛺2𝑟2 − 𝜌𝑔𝛿(𝑟) + 𝐶3 

𝛿(𝑟) =
1

2𝑔
 𝛺2𝑟2 −

𝑝𝑎𝑡𝑚

𝜌𝑔
+

𝐶3

𝜌𝑔
 

and the boundary condition we can apply to calculate the constant is at the lowest point of 

the fluid surface: 

𝛿(𝑟 = 0) =  𝑧0 

⟹ 𝑝𝑎𝑡𝑚 = −𝜌𝑔𝑧0 + 𝐶3        ⟹ 𝐶3 = 𝑝𝑎𝑡𝑚 + 𝜌𝑔𝑧0 

 

Therefore  

𝜹(𝒓) =
𝟏

𝟐𝒈
 𝜴𝟐𝒓𝟐 + 𝒛𝟎  

 

Note: If we want to calculate the pressure, we can substitute the constant we calculated into 

the pressure equation and finally get: 

𝑝(𝑟, 𝑧) − 𝑝𝑎𝑡𝑚 =
1

2
 𝜌𝛺2𝑟2 + 𝜌𝑔(𝑧0 − 𝑧) 

 

 

Exercise 2.4 

The fluid is flowing in the z direction and we have velocity gradients in the x and y directions. 

Therefore:  

𝒗 = 𝑣𝑧(𝑥, 𝑦)𝒆𝒛 

Moreover, ignoring any gravitational effects, the pressure is uniform on a section of the pipe 

and varies along the flow: 

𝑝 = 𝑝(𝑧) 

The velocity profile satisfies the boundary conditions: 

𝑣(±𝐵, 𝑦) = 0 ; 𝑣(𝑥, ±𝐵) = 0 

𝜕𝑣𝑧

𝜕𝑥
(𝑥 = 0, 𝑦 = 0) = 0; 

𝜕𝑣𝑧

𝜕𝑦
(𝑥 = 0, 𝑦 = 0) 

First, let’s see if the proposed solution matches the boundary conditions: 

𝑣𝑧 =
(𝑝0 − 𝑝𝐿)𝐵2

4𝜇𝐿
[(1 −

𝑦2

𝐵2
) (1 −

𝑥2

𝐵2
)] 



𝑣(±𝐵, 𝑦) = 0 yes 

𝑣(0, ±𝐵) = 0 yes 

𝜕𝑣𝑧

𝜕𝑥
= −

(𝑝0 − 𝑝𝐿)𝐵2

4𝜇𝐿
(1 −

𝑦2

𝐵2
)

2

𝐵2
𝑥 yes  

𝜕𝑣𝑧

𝜕𝑦
= −

(𝑝0 − 𝑝𝐿)𝐵2

4𝜇𝐿
(1 −

𝑥2

𝐵2
)

2

𝐵2
𝑦  yes 

Ok looks good so far, lets next check the momentum balance. In Cartesian coordinates, the 

Navier-Stokes equation projected on the x and y axis are irrelevant here (we just end up with 

the hydrostatic pressure): 

On the z axis: 

𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑥

𝜕𝑣𝑧

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑧

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+ 𝜇 (

𝜕2𝑣𝑧

𝜕𝑥2
+

𝜕2𝑣𝑧

𝜕𝑦2
+

𝜕2𝑣𝑧

𝜕𝑧2
) + 𝜌𝑔𝑧 

0 = −
𝜕𝑝

𝜕𝑧
+ 𝜇 (

𝜕2𝑣𝑧

𝜕𝑥2
+

𝜕2𝑣𝑧

𝜕𝑦2
) 

This relation must be true over the entire domain of our square duct. Let’s check this. 

Solving for the second derivatives using the given velocity profile: 

𝜕2𝑣𝑧

𝜕𝑥2
= −

(𝑝0 − 𝑝𝐿)

2𝜇𝐿
(1 −

𝑦2

𝐵2
)  

𝜕2𝑣𝑧

𝜕𝑦2
= −

(𝑝0 − 𝑝𝐿)

2𝜇𝐿
(1 −

𝑥2

𝐵2
) 

Plugging in the Navier-Stokes equation: 

−
𝜕𝑝

𝜕𝑧
+ 𝜇 (

𝜕2𝑣𝑧

𝜕𝑥2
+

𝜕2𝑣𝑧

𝜕𝑦2
) ⇒ −

𝜕𝑝

𝜕𝑧
+ 𝜇 (−

(𝑝0 − 𝑝𝐿)

2𝜇𝐿
(1 −

𝑦2

𝐵2
) −

(𝑝0 − 𝑝𝐿)𝐵2

2𝜇𝐿
(1 −

𝑥2

𝐵2
)) 

⇒ −
𝜕𝑝

𝜕𝑧
−

(𝑝0 − 𝑝𝐿)

2𝐿
((1 −

𝑦2

𝐵2
) + (1 −

𝑥2

𝐵2
)) = 0  

We have the sum of three independent functions of z, y, x. If the Navier Stokes equation was 

verified, the sum of these functions should be always equal to 0. 

In particular, on the current line defined by x=0 and y=0 (center of the pipe), in analogy to 

flow in a circular pipe the pressure drop must be linear so we must have: 

𝜕𝑝

𝜕𝑧
= −

(𝑝0 − 𝑝𝐿)

𝐿
 

And since p depends only on z, this must therefore be true in all the fluid. Which implies 

that: 



(𝑝0 − 𝑝𝐿)

2𝐿
[2 − (1 −

𝑦2

𝐵2
) − (1 −

𝑥2

𝐵2
)] = 0 

For any x and y on the section we are considering.  

Clearly this is not true as for non-zero values of x and y the equation is not correct. 

Therefore the momentum balance is not satisfied and thus velocity profile we are given is 

wrong. 

For those that are curious the correct velocity profile is given by the following (rapidly 

converging) infinite series: 

𝑣𝑧(𝑥, 𝑦) =
1

𝜇

𝑑𝑝

𝑑𝑧
[
1

2
(𝑦2 − 𝐵2) − 16𝐵2 ∑

(−1)𝑛

𝑢𝑛
3

cosh (𝑢𝑛
𝑥

2𝐵)

cosh (𝑢𝑛
1

2𝐵)
cosh (𝑢𝑛

𝑦

2𝐵
)

∞

𝑛=1

] 

where 𝑢𝑛 = (2𝑛 − 1)𝜋. Yes, this is the real solution ☺. In another example we will show you 

how these infinite series arise.  

 

Exercise 2.5 

In cylindrical coordinates. Due to the symmetry of the problem, nothing should be 

dependent on 𝜃. Moreover, the flow is only radial. 

Therefore, we have: 

𝒗 = 𝑣𝑟(𝑟, 𝑧)𝒆𝒓 

And 

𝑝 = 𝑝(𝑟, 𝑧) 

 

The boundary conditions are: 

𝑣𝑟(𝑟, ±𝑏) = 0;    
𝜕𝑣𝑟

𝜕𝑧
(𝑟, 0) = 0 

 

The projected Navier Stokes equations give, after simplification: 

𝜌𝑣𝑟

𝜕𝑣𝑟

𝜕𝑟
= −

𝜕𝑝

𝜕𝑟
+ 𝜇 (

𝜕

𝜕𝑟
(

1

𝑟

𝜕

𝜕𝑟
(𝑟 𝑣𝑟)) +

𝜕2𝑣𝑟

𝜕𝑧2
)  

𝜕𝑝

𝜕𝜃
= 0 

𝜕𝑝

𝜕𝑧
= 0 (neglecting gravity) 



 

Moreover, the continuity equation is always valid: 

𝜕𝜌

𝜕𝑡
= −(𝛁 ∙ 𝜌𝒗) 

In cylindrical coordinates the continuity equation is : 

𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑣𝑟) +

1

𝑟

𝜕(𝜌𝑣𝜃)

𝜕𝜃
+

𝜕(𝜌𝑣𝑧)

𝜕𝑧
= 0 

Since we are at steady state, and 𝒗 = 𝑣𝑟(𝑟, 𝑧)𝒆𝒓 the continuity equation becomes (assuming 

constant density): 

 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑣𝑟) = 0     ⟹       

𝜕

𝜕𝑟
(𝑟𝑣𝑟) = 0 

Integrating the simplified continuity equation (keeping in mind that 𝑣𝑟(𝑟, 𝑧)): 

𝑟𝑣𝑟 = 𝑓(𝑧) ⟺ 𝑣𝑟 =
𝑓(𝑧)

𝑟
 

 

Replacing this result into the simplified Navier Stokes: 

𝜌𝑣𝑟

𝜕𝑣𝑟

𝜕𝑟
= −

𝑑𝑝

𝑑𝑟
+ 𝜇

𝜕2𝑣𝑟

𝜕𝑧2
 

−𝜌
𝑓(𝑧)2

𝑟3
= −

𝑑𝑝

𝑑𝑟
+

𝜇

𝑟

𝑑2𝑓

𝑑𝑧2
   

 

We do not know how to solve such an equation, unless the right term is negligible (see next 

module). 
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